245 research outputs found

    Flexible photonics for biomedical applications: A review

    Get PDF
    Flexible photonics is a powerful tool that has emerged in last few decades to solve footprint and shape related limitations in photonic devices. Indeed, flexible photonic devices offer several key features: ability to adjust to complex shape surfaces, small footprint, high resilience to mechanical damage, immunity to electromagnetic interference. Thanks to these characteristics, these devices are very attractive for applications in the biomedical field. For instance, the flexibility allows optimal adhesion to the skin, or the reduced size facilitates the realization of wearable devices. In this paper, we will first present the characteristic of flexible photonic devices and discuss about the so far impact of flexible photonics in the biomedical field. Then, we will analyze the currently existing devices and the main used components, with a focus on the applications

    Effective photodarkening suppression in Yb-doped fiber lasers by visible light injection

    Get PDF
    Al-silicate fibers have excellent manufacturing quality. Unfortunately, high-Yb doping concentration may be limited by severe losses induced by photodarkening phenomenon. In this paper we demonstrate for the first time that Al-silicate Yb-doped fibers with highinversion and doping concentration above 1 wt% can be successfully used by implementing a simple optical bleaching scheme. A co-injection into the active fiber of a few mW of light at around 550 nm wavelength successfully eliminates almost all photodarkening induced losses. We demonstrate operation at above 90% of the pristine output power level in several lasers with up to 30% Yb ions in the excited state. These results may allow to use Yb-doped Al-silicate fibers with doping level increased by one order of magnitude. Finally, we provide a comprehensive picture of main parameters affecting photobleaching performance and, to the best of our knowledge, we report the first quantitative measurement of the Ytterbium excited state absorption cross-section in the visible range. © 2014 Optical Society of America

    Advanced solid-state lasers 2019: Focus issue introduction

    Get PDF
    This joint issue of Optics Express and Optical Materials Express features 17 state-of-the art articles written by authors who participated in the international conference Advanced Solid-State Lasers held in Vienna, Austria, from September 29 to October 3, 2019. This introduction provides a summary of these articles that cover numerous areas of solid-state lasers from materials research to sources and from design to experimental demonstration

    Design of a Multi-Wavelength Fiber Laser Based on Tm:Er:Yb:Ho Co-Doped Germanate Glass

    Get PDF
    In this article, for the first time, an efficient multi-wavelength fiber laser based on a Tm:Er:Yb:Ho co-doped germanate glass, optically pumped at 980 nm wavelength and simultaneously emitting at 1550 nm, 1800 nm and 2050 nm wavelengths, is designed and optimized. An exhaustive model, taking into account the energy transfer phenomena between different rare earths, is developed. The device behavior is investigated by means of several parametric sweeps with respect to the input pump power, the fiber length, the dopant concentrations and the output mirrors reflectivities. Four optimal concentrations have been found by means of a home-made computer code based on particle swarm optimization (PSO) approach, allowing a global solution search. These concentrations allow levels of output powers very close to each other, equal to 20 mW pmpm 0.1% at 1550 nm, 1800 nm and 2050 nm, respectively. These results predict the possibility of tailoring the dopant concentrations in order to construct broadband optical sources with similar emission powers at multiple wavelengths and broadband amplifiers

    Focus issue introduction: Advanced solid-state lasers 2020

    Get PDF
    This Joint Issue of Optics Express and Optical Materials Express features 15 articles written by authors who participated in the international online conference Advanced Solid State Lasers held 13–16 October, 2020. This review provides a summary of the conference and these articles from the conference which sample the spectrum of solid state laser theory and experiment, from materials research to sources and from design innovation to applications

    Design of an Efficient Pumping Scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF Fiber Laser

    Get PDF
    This letter illustrates the design of a novel medium infrared (Mid-IR) laser based on a photonic crystal fiber made of dysprosium-doped chalcogenide glass, Dy3+:Ga5Ge20Sb10S65. In order to perform a realistic investigation, the simulation is performed by taking into account the spectroscopic parameters measured on the rare earth-doped glass sample. The simulated results show that an optical beam emission close to 4400-nm wavelength can be obtained by employing two pump beams at 2850 nm (pump #1) and 4092 nm (pump #2) wavelengths. As example, for the pump powers of 50 mW (pump #1) and 1 W (pump #2), the input mirror reflectivity of 99%, the output mirror reflectivity of 30%, and the optical cavity length of 50 cm, a signal power close to 350 mW at the wavelength of 4384 nm can be generated. This result indicates that the designed source configuration is feasible for high beam quality Mid-IR light generation and it is efficient enough to find applications in optical free propagation links, optical remote sensing, and medicine

    Spectroscopy of Yb:Tm doped tellurite glasses for efficient infrared fiber laser

    Get PDF
    We performed extensive spectroscopy of tellurite glasses doped with high concentration of Tm ions for laser emission at around 2 micron wavelength. The aim of the work is to develop a glass suitable for single-frequency fiber laser. In fact such a kind of laser require the use of short cavity length and therefore high gain per unit length medium. Tellurite glasses allows high-doping concentration and are therefore an excellent candidate. In these paper we review our recent results. In particular we address the optical and thermo-mechanical properties of several tellurite glasses (75mol%Te02.20mol%ZnO. 5mol%Na2O) with Tm3+ doping up to 111,564 pp

    Numerical modeling of the impact of pump wavelength on Yb-doped fiber amplifier performance

    Get PDF
    Ytterbium-doped optical amplifiers have become common tools for industrial applications due to their high efficiency, relatively low cost and potentially very high output power level. The efficiency of an ytterbium-doped fiber amplifier depends mainly on the absorption of pump radiation, and, therefore, optimum pump wavelengths have been proposed such as 915 nm. However, the semiconductor pump diodes batch supplied by manufacturers may exhibit a spread in the output wavelength. This paper theoretically investigates the performance of Yb-doped amplifiers for different pump wavelengths and defines the pump power penalty when the pump source does not emit at the optimum wavelength. The penalty has been defined as normalized excess pump power required to achieve the desired gain
    corecore